Viewing file: Xtea.php (14.39 KB) -rw-rw-rw- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
<?php /* vim: set expandtab tabstop=4 shiftwidth=4 softtabstop=4: */ // // +----------------------------------------------------------------------+ // | PHP version 4.0 | // +----------------------------------------------------------------------+ // | Copyright (c) 2002 The PHP Group | // +----------------------------------------------------------------------+ // | This source file is subject to version 2.02 of the PHP license, | // | that is bundled with this package in the file LICENSE, and is | // | available at through the world-wide-web at | // | http://www.php.net/license/2_02.txt. | // | If you did not receive a copy of the PHP license and are unable to | // | obtain it through the world-wide-web, please send a note to | // | license@php.net so we can mail you a copy immediately. | // +----------------------------------------------------------------------+ // | Authors: Jeroen Derks <jeroen@derks.it> | // +----------------------------------------------------------------------+ // | Original code: http://vader.brad.ac.uk/tea/source.shtml#new_ansi | // +----------------------------------------------------------------------+ // // $Id: Xtea.php,v 1.6 2002/09/03 11:04:08 jeroend Exp $ //
/** PEAR base class */ require_once 'PEAR.php';
/** * Class that implements the xTEA encryption algorithm. * This enables you to encrypt data without requiring mcrypt. * * From the C source: * ----------------------------------------- * The Tiny Encryption Algorithm (TEA) by * David Wheeler and Roger Needham of the * Cambridge Computer Laboratory. * * Placed in the Public Domain by * David Wheeler and Roger Needham. * * **** ANSI C VERSION (New Variant) **** * * Notes: * * TEA is a Feistel cipher with XOR and * and addition as the non-linear mixing * functions. * * Takes 64 bits of data in v[0] and v[1]. * Returns 64 bits of data in w[0] and w[1]. * Takes 128 bits of key in k[0] - k[3]. * * TEA can be operated in any of the modes * of DES. Cipher Block Chaining is, for example, * simple to implement. * * n is the number of iterations. 32 is ample, * 16 is sufficient, as few as eight may be OK. * The algorithm achieves good dispersion after * six iterations. The iteration count can be * made variable if required. * * Note this is optimised for 32-bit CPUs with * fast shift capabilities. It can very easily * be ported to assembly language on most CPUs. * * delta is chosen to be the real part of (the * golden ratio Sqrt(5/4) - 1/2 ~ 0.618034 * multiplied by 2^32). * * This version has been amended to foil two * weaknesses identified by David A. Wagner * (daw@cs.berkeley.edu): 1) effective key * length of old-variant TEA was 126 not 128 * bits 2) a related key attack was possible * although impractical. * * void encipher(unsigned long *const v,unsigned long *const w, * const unsigned long *const k) * { * register unsigned long y=v[0],z=v[1],sum=0,delta=0x9E3779B9,n=32; * * while(n-->0) * { * y+= (z<<4 ^ z>>5) + z ^ sum + k[sum&3]; * sum += delta; * z+= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 & 3]; * } * * w[0]=y; w[1]=z; * } * * void decipher(unsigned long *const v,unsigned long *const w, * const unsigned long *const k) * { * register unsigned long y=v[0],z=v[1],sum=0xC6EF3720, * delta=0x9E3779B9,n=32; * * # sum = delta<<5, in general sum = delta * n * * while(n-->0) * { * z-= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 & 3]; * sum -= delta; * y-= (z<<4 ^ z>>5) + z ^ sum + k[sum&3]; * } * * w[0]=y; w[1]=z; * } * * ----------------------------------------- * * @TODO Add CFB. * * @package Crypt * @version $Revision: 1.6 $ * @access public * @author Jeroen Derks <jeroen@derks.it> */
class Crypt_Xtea extends PEAR {
/** * Number of iterations. * @var integer * @access private */ var $n_iter;
// {{{ Crypt_Xtea()
/** * Constructor, sets the number of iterations. * * @access public * @author Jeroen Derks <jeroen@derks.it> * @see setIter() */ function Crypt_Xtea() { $this->setIter( 32 ); }
// }}} // {{{ setIter()
/** * Set the number of iterations to use. * * @param integer $n_iter Number of iterations to use. * * @access public * @author Jeroen Derks <jeroen@derks.it> * @see getIter() */ function setIter( $n_iter ) { $this->n_iter = $n_iter; }
// }}} // {{{ getIter()
/** * Get the number of iterations to use. * * @return integer Number of iterations to use. * * @access public * @author Jeroen Derks <jeroen@derks.it> * @see getIter() */ function getIter() { return $this->n_iter; }
// }}} // {{{ encrypt()
/** * Encrypt a string using a specific key. * * @param string $data Data to encrypt. * @param string $key Key to encrypt data with (binary string). * * @return string Binary encrypted character string. * * @access public * @author Jeroen Derks <jeroen@derks.it> * @see Decrypt(), _EncipherLong(), _Resize(), _str2long() */ function encrypt($data, $key) { // resize data to 32 bits (4 bytes) $n = $this->_resize($data, 4);
// convert data to long $data_long[0] = $n; $n_data_long = $this->_str2long(1, $data, $data_long);
// resize data_long to 64 bits (2 longs of 32 bits) $n = count($data_long); if (($n & 1) == 1) { $data_long[$n] = chr(0); $n_data_long++; }
// resize key to a multiple of 128 bits (16 bytes) $this->_resize($key, 16, true);
// convert key to long $n_key_long = $this->_str2long(0, $key, $key_long);
// encrypt the long data with the key $enc_data = ''; $w = array( 0, 0 ); $j = 0; $k = array( 0, 0, 0, 0 ); for ($i = 0; $i < $n_data_long; ++$i) { // get next key part of 128 bits if ($j + 4 <= $n_key_long) { $k[0] = $key_long[$j]; $k[1] = $key_long[$j + 1]; $k[2] = $key_long[$j + 2]; $k[3] = $key_long[$j + 3]; } else { $k[0] = $key_long[$j % $n_key_long]; $k[1] = $key_long[($j + 1) % $n_key_long]; $k[2] = $key_long[($j + 2) % $n_key_long]; $k[3] = $key_long[($j + 3) % $n_key_long]; } $j = ($j + 4) % $n_key_long;
$this->_encipherLong($data_long[$i], $data_long[++$i], $w, $k);
// append the enciphered longs to the result $enc_data .= $this->_long2str($w[0]); $enc_data .= $this->_long2str($w[1]); }
return $enc_data; }
// }}} // {{{ decrypt()
/** * Decrypt an encrypted string using a specific key. * * @param string $data Encrypted data to decrypt. * @param string $key Key to decrypt encrypted data with (binary string). * * @return string Binary decrypted character string. * * @access public * @author Jeroen Derks <jeroen@derks.it> * @see _EncipherLong(), Encrypt(), _Resize(), _str2long() */ function decrypt($enc_data, $key) { // convert data to long $n_enc_data_long = $this->_str2long(0, $enc_data, $enc_data_long);
// resize key to a multiple of 128 bits (16 bytes) $this->_resize($key, 16, true);
// convert key to long $n_key_long = $this->_str2long(0, $key, $key_long);
// decrypt the long data with the key $data = ''; $w = array( 0, 0 ); $j = 0; $len = 0; $k = array( 0, 0, 0, 0 ); $pos = 0; for ($i = 0; $i < $n_enc_data_long; $i += 2) { // get next key part of 128 bits if ($j + 4 <= $n_key_long) { $k[0] = $key_long[$j]; $k[1] = $key_long[$j + 1]; $k[2] = $key_long[$j + 2]; $k[3] = $key_long[$j + 3]; } else { $k[0] = $key_long[$j % $n_key_long]; $k[1] = $key_long[($j + 1) % $n_key_long]; $k[2] = $key_long[($j + 2) % $n_key_long]; $k[3] = $key_long[($j + 3) % $n_key_long]; } $j = ($j + 4) % $n_key_long;
$this->_decipherLong($enc_data_long[$i], $enc_data_long[$i + 1], $w, $k); // append the deciphered longs to the result data (remove padding) if (0 == $i) { $len = $w[0]; if (4 <= $len) { $data .= $this->_long2str($w[1]); } else { $data .= substr( $this->_long2str($w[1]), 0, $len % 4 ); } } else { $pos = ($i - 1) * 4; if ($pos + 4 <= $len) { $data .= $this->_long2str($w[0]);
if ($pos + 8 <= $len) { $data .= $this->_long2str($w[1]); } elseif ($pos + 4 < $len) { $data .= substr( $this->_long2str($w[1]), 0, $len % 4 ); } } else { $data .= substr( $this->_long2str($w[0]), 0, $len % 4 ); } } } return $data; }
// }}} // {{{ _encipherLong()
/** * Encipher a single long (32-bit) value. * * @param integer $y 32 bits of data. * @param integer $z 32 bits of data. * @param array &$w Placeholder for enciphered 64 bits (in w[0] and w[1]). * @param array &$k Key 128 bits (in k[0]-k[3]). * * @access private * @author Jeroen Derks <jeroen@derks.it> * @see $n_iter, _DecipherLong() */ function _encipherLong($y, $z, &$w, &$k) { $sum = (integer) 0; $delta = (integer) 0x9E3779B9; $n = (integer) $this->n_iter;
while ($n-- > 0) { $y += ($z << 4 ^ $z >> 5) + $z ^ $sum + $k[$sum & 3]; $sum += $delta; $z += ($y << 4 ^ $y >> 5) + $y ^ $sum + $k[$sum >> 11 & 3]; }
$w[0] = $y & 0xffffffff; $w[1] = $z & 0xffffffff; }
// }}} // {{{ _decipherLong()
/** * Decipher a single long (32-bit) value. * * @param integer $y 32 bits of enciphered data. * @param integer $z 32 bits of enciphered data. * @param array &$w Placeholder for deciphered 64 bits (in w[0] and w[1]). * @param array &$k Key 128 bits (in k[0]-k[3]). * * @access private * @author Jeroen Derks <jeroen@derks.it> * @see $n_iter, _DecipherLong() */ function _decipherLong($y, $z, &$w, &$k) { // sum = delta<<5, in general sum = delta * n $sum = (integer) 0xC6EF3720; $delta = (integer) 0x9E3779B9; $n = (integer) $this->n_iter;
while ($n-- > 0) { $z -= ($y << 4 ^ $y >> 5) + $y ^ $sum + $k[$sum >> 11 & 3]; $sum -= $delta; $y -= ($z << 4 ^ $z >> 5) + $z ^ $sum + $k[$sum & 3]; }
$w[0] = $y & 0xffffffff; $w[1] = $z & 0xffffffff; }
// }}} // {{{ _resize()
/** * Resize data string to a multiple of specified size. * * @param string $data Data string to resize to specified size. * @param integer $size Size in bytes to align data to. * @param boolean $nonull Set to true if padded bytes should not be zero. * * @return integer Length of supplied data string. * * @access private * @author Jeroen Derks <jeroen@derks.it> */ function _resize(&$data, $size, $nonull = false) { $n = strlen($data); $nmod = $n % $size; if ($nmod > 0) { if ($nonull) { for ($i = $n; $i < $n - $nmod + $size; ++$i) { $data[$i] = $data[$i % $n]; } } else { for ($i = $n; $i < $n - $nmod + $size; ++$i) { $data[$i] = chr(0); } } } return $n; }
// }}} // {{{ _hex2bin()
/** * Convert a hexadecimal string to a binary string (e.g. convert "616263" to "abc"). * * @param string $str Hexadecimal string to convert to binary string. * * @return string Binary string. * * @access private * @author Jeroen Derks <jeroen@derks.it> */ function _hex2bin($str) { $len = strlen($str); return pack("H" . $len, $str); }
// }}} // {{{ _str2long()
/** * Convert string to array of long. * * @param integer $start Index into $data_long for output. * @param string &$data Input string. * @param array &$data_long Output array of long. * * @return integer Index from which to optionally continue. * * @access private * @author Jeroen Derks <jeroen@derks.it> */ function _str2long($start, &$data, &$data_long) { $n = strlen($data); for ($i = 0, $j = $start; $i < $n; $i = $i + 4, ++$j) { $data_long[$j] = ((ord($data[$i]) & 0xff) << 24) + ((ord($data[$i + 1]) & 0xff) << 16) + ((ord($data[$i + 2]) & 0xff) << 8) + ((ord($data[$i + 3]) & 0xff)); } return $j; }
// }}} // {{{ _long2str()
/** * Convert long to character string. * * @param long $l Long to convert to character string. * * @return string Character string. * * @access private * @author Jeroen Derks <jeroen@derks.it> */ function _long2str($l) { return pack( 'N', $l ); }
// }}} }
?>
|