Software: Apache. PHP/5.5.15 uname -a: Windows NT SVR-DMZ 6.1 build 7600 (Windows Server 2008 R2 Enterprise Edition) i586 SYSTEM Safe-mode: OFF (not secure) E:\nuevo\phpMyAdmin\js\openlayers\src\openlayers\lib\OpenLayers\Geometry\ drwxrwxrwx |
Viewing file: Polygon.js (9.37 KB) -rw-rw-rw- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) | /* Copyright (c) 2006-2010 by OpenLayers Contributors (see authors.txt for * full list of contributors). Published under the Clear BSD license. * See http://svn.openlayers.org/trunk/openlayers/license.txt for the * full text of the license. */ /** * @requires OpenLayers/Geometry/Collection.js * @requires OpenLayers/Geometry/LinearRing.js */ /** * Class: OpenLayers.Geometry.Polygon * Polygon is a collection of Geometry.LinearRings. * * Inherits from: * - <OpenLayers.Geometry.Collection> * - <OpenLayers.Geometry> */ OpenLayers.Geometry.Polygon = OpenLayers.Class( OpenLayers.Geometry.Collection, { /** * Property: componentTypes * {Array(String)} An array of class names representing the types of * components that the collection can include. A null value means the * component types are not restricted. */ componentTypes: ["OpenLayers.Geometry.LinearRing"], /** * Constructor: OpenLayers.Geometry.Polygon * Constructor for a Polygon geometry. * The first ring (this.component[0])is the outer bounds of the polygon and * all subsequent rings (this.component[1-n]) are internal holes. * * * Parameters: * components - {Array(<OpenLayers.Geometry.LinearRing>)} */ initialize: function(components) { OpenLayers.Geometry.Collection.prototype.initialize.apply(this, arguments); }, /** * APIMethod: getArea * Calculated by subtracting the areas of the internal holes from the * area of the outer hole. * * Returns: * {float} The area of the geometry */ getArea: function() { var area = 0.0; if ( this.components && (this.components.length > 0)) { area += Math.abs(this.components[0].getArea()); for (var i=1, len=this.components.length; i<len; i++) { area -= Math.abs(this.components[i].getArea()); } } return area; }, /** * APIMethod: getGeodesicArea * Calculate the approximate area of the polygon were it projected onto * the earth. * * Parameters: * projection - {<OpenLayers.Projection>} The spatial reference system * for the geometry coordinates. If not provided, Geographic/WGS84 is * assumed. * * Reference: * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for * Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion * Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409 * * Returns: * {float} The approximate geodesic area of the polygon in square meters. */ getGeodesicArea: function(projection) { var area = 0.0; if(this.components && (this.components.length > 0)) { area += Math.abs(this.components[0].getGeodesicArea(projection)); for(var i=1, len=this.components.length; i<len; i++) { area -= Math.abs(this.components[i].getGeodesicArea(projection)); } } return area; }, /** * Method: containsPoint * Test if a point is inside a polygon. Points on a polygon edge are * considered inside. * * Parameters: * point - {<OpenLayers.Geometry.Point>} * * Returns: * {Boolean | Number} The point is inside the polygon. Returns 1 if the * point is on an edge. Returns boolean otherwise. */ containsPoint: function(point) { var numRings = this.components.length; var contained = false; if(numRings > 0) { // check exterior ring - 1 means on edge, boolean otherwise contained = this.components[0].containsPoint(point); if(contained !== 1) { if(contained && numRings > 1) { // check interior rings var hole; for(var i=1; i<numRings; ++i) { hole = this.components[i].containsPoint(point); if(hole) { if(hole === 1) { // on edge contained = 1; } else { // in hole contained = false; } break; } } } } } return contained; }, /** * APIMethod: intersects * Determine if the input geometry intersects this one. * * Parameters: * geometry - {<OpenLayers.Geometry>} Any type of geometry. * * Returns: * {Boolean} The input geometry intersects this one. */ intersects: function(geometry) { var intersect = false; var i, len; if(geometry.CLASS_NAME == "OpenLayers.Geometry.Point") { intersect = this.containsPoint(geometry); } else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LineString" || geometry.CLASS_NAME == "OpenLayers.Geometry.LinearRing") { // check if rings/linestrings intersect for(i=0, len=this.components.length; i<len; ++i) { intersect = geometry.intersects(this.components[i]); if(intersect) { break; } } if(!intersect) { // check if this poly contains points of the ring/linestring for(i=0, len=geometry.components.length; i<len; ++i) { intersect = this.containsPoint(geometry.components[i]); if(intersect) { break; } } } } else { for(i=0, len=geometry.components.length; i<len; ++ i) { intersect = this.intersects(geometry.components[i]); if(intersect) { break; } } } // check case where this poly is wholly contained by another if(!intersect && geometry.CLASS_NAME == "OpenLayers.Geometry.Polygon") { // exterior ring points will be contained in the other geometry var ring = this.components[0]; for(i=0, len=ring.components.length; i<len; ++i) { intersect = geometry.containsPoint(ring.components[i]); if(intersect) { break; } } } return intersect; }, /** * APIMethod: distanceTo * Calculate the closest distance between two geometries (on the x-y plane). * * Parameters: * geometry - {<OpenLayers.Geometry>} The target geometry. * options - {Object} Optional properties for configuring the distance * calculation. * * Valid options: * details - {Boolean} Return details from the distance calculation. * Default is false. * edge - {Boolean} Calculate the distance from this geometry to the * nearest edge of the target geometry. Default is true. If true, * calling distanceTo from a geometry that is wholly contained within * the target will result in a non-zero distance. If false, whenever * geometries intersect, calling distanceTo will return 0. If false, * details cannot be returned. * * Returns: * {Number | Object} The distance between this geometry and the target. * If details is true, the return will be an object with distance, * x0, y0, x1, and y1 properties. The x0 and y0 properties represent * the coordinates of the closest point on this geometry. The x1 and y1 * properties represent the coordinates of the closest point on the * target geometry. */ distanceTo: function(geometry, options) { var edge = !(options && options.edge === false); var result; // this is the case where we might not be looking for distance to edge if(!edge && this.intersects(geometry)) { result = 0; } else { result = OpenLayers.Geometry.Collection.prototype.distanceTo.apply( this, [geometry, options] ); } return result; }, CLASS_NAME: "OpenLayers.Geometry.Polygon" }); /** * APIMethod: createRegularPolygon * Create a regular polygon around a radius. Useful for creating circles * and the like. * * Parameters: * origin - {<OpenLayers.Geometry.Point>} center of polygon. * radius - {Float} distance to vertex, in map units. * sides - {Integer} Number of sides. 20 approximates a circle. * rotation - {Float} original angle of rotation, in degrees. */ OpenLayers.Geometry.Polygon.createRegularPolygon = function(origin, radius, sides, rotation) { var angle = Math.PI * ((1/sides) - (1/2)); if(rotation) { angle += (rotation / 180) * Math.PI; } var rotatedAngle, x, y; var points = []; for(var i=0; i<sides; ++i) { rotatedAngle = angle + (i * 2 * Math.PI / sides); x = origin.x + (radius * Math.cos(rotatedAngle)); y = origin.y + (radius * Math.sin(rotatedAngle)); points.push(new OpenLayers.Geometry.Point(x, y)); } var ring = new OpenLayers.Geometry.LinearRing(points); return new OpenLayers.Geometry.Polygon([ring]); }; |
:: Command execute :: | |
--[ c99shell v. 1.0 pre-release build #13 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0312 ]-- |